
ptg16518469

ptg16518469

Core Java®

Volume I—Fundamentals

Tenth Edition

ptg16518469

This page intentionally left blank

ptg16518469

Core Java®

Volume I—Fundamentals
Tenth Edition

Cay S. Horstmann

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

ptg16518469

The author and publisher have taken care in the preparation of this book, but make no

expressed or implied warranty of any kind and assume no responsibility for errors or

omissions. No liability is assumed for incidental or consequential damages in connection

with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities

(which may include electronic versions; custom cover designs; and content particular to

your business, training goals, marketing focus, or branding interests), please contact our

corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact

international@pearsoned.com.

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Names: Horstmann, Cay S., 1959- author.

Title: Core Java / Cay S. Horstmann.

Description: Tenth edition. | New York : Prentice Hall, [2016] | Includes

 index.

Identifiers: LCCN 2015038763| ISBN 9780134177304 (volume 1 : pbk. : alk.

 paper) | ISBN 0134177304 (volume 1 : pbk. : alk. paper)

Subjects: LCSH: Java (Computer program language)

Classification: LCC QA76.73.J38 H6753 2016 | DDC 005.13/3—dc23

LC record available at http://lccn.loc.gov/2015038763

Copyright © 2016 Oracle and/or its affiliates. All rights reserved.

500 Oracle Parkway, Redwood Shores, CA 94065

Portions © Cay S. Horstmann

All rights reserved. Printed in the United States of America. This publication is protected

by copyright, and permission must be obtained from the publisher prior to any prohibited

reproduction, storage in a retrieval system, or transmission in any form or by any means,

electronic, mechanical, photocopying, recording, or likewise. For information regarding

permissions, request forms and the appropriate contacts within the Pearson Education

Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Oracle America Inc. does not make any representations or warranties as to the accuracy,

adequacy or completeness of any information contained in this work, and is not responsible

for any errors or omissions.

ISBN-13: 978-0-13-417730-4

ISBN-10: 0-13-417730-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,

Indiana.

First printing, December 2015

http://lccn.loc.gov/2015038763
http://www.pearsoned.com/permissions/

ptg16518469

Contents

xixPreface ..

xxvAcknowledgments ...

1Chapter 1: An Introduction to Java ...

1Java as a Programming Platform ...1.1

2The Java “White Paper” Buzzwords ..1.2

3Simple ...1.2.1

4Object-Oriented ...1.2.2

4Distributed ...1.2.3

4Robust ...1.2.4

4Secure ..1.2.5

5Architecture-Neutral ...1.2.6

6Portable ...1.2.7

7Interpreted ..1.2.8

7High-Performance ...1.2.9

7Multithreaded ..1.2.10

8Dynamic ..1.2.11

8Java Applets and the Internet ...1.3

10A Short History of Java ...1.4

13Common Misconceptions about Java ...1.5

17Chapter 2: The Java Programming Environment

18Installing the Java Development Kit ...2.1

18Downloading the JDK ...2.1.1

20Setting up the JDK ...2.1.2

22Installing Source Files and Documentation2.1.3

23Using the Command-Line Tools ..2.2

26Using an Integrated Development Environment2.3

30Running a Graphical Application ...2.4

33Building and Running Applets ..2.5

v

ptg16518469

41Chapter 3: Fundamental Programming Structures in Java

42A Simple Java Program ...3.1

46Comments ...3.2

47Data Types ...3.3

47Integer Types ..3.3.1

48Floating-Point Types ...3.3.2

50The char Type ..3.3.3

51Unicode and the char Type ..3.3.4

52The boolean Type ..3.3.5

53Variables ..3.4

54Initializing Variables ...3.4.1

55Constants ..3.4.2

56Operators ..3.5

57Mathematical Functions and Constants3.5.1

59Conversions between Numeric Types3.5.2

60Casts ..3.5.3

61Combining Assignment with Operators3.5.4

61Increment and Decrement Operators3.5.5

62Relational and boolean Operators ..3.5.6

63Bitwise Operators ..3.5.7

64Parentheses and Operator Hierarchy3.5.8

65Enumerated Types ..3.5.9

65Strings ..3.6

66Substrings ...3.6.1

66Concatenation ..3.6.2

67Strings Are Immutable ..3.6.3

68Testing Strings for Equality ..3.6.4

69Empty and Null Strings ..3.6.5

70Code Points and Code Units ..3.6.6

71The StringAPI ..3.6.7

74Reading the Online API Documentation3.6.8

77Building Strings ...3.6.9

78Input and Output ...3.7

79Reading Input ..3.7.1

82Formatting Output ..3.7.2

Contentsvi

ptg16518469

87File Input and Output ...3.7.3

89Control Flow ...3.8

89Block Scope ...3.8.1

90Conditional Statements ..3.8.2

94Loops ...3.8.3

99Determinate Loops ..3.8.4

103Multiple Selections—The switch Statement3.8.5

106Statements That Break Control Flow3.8.6

108Big Numbers ...3.9

111Arrays ..3.10

113The “for each” Loop ..3.10.1

114Array Initializers and Anonymous Arrays3.10.2

114Array Copying ...3.10.3

116Command-Line Parameters ...3.10.4

117Array Sorting ...3.10.5

120Multidimensional Arrays ...3.10.6

124Ragged Arrays ...3.10.7

129Chapter 4: Objects and Classes ..

130Introduction to Object-Oriented Programming4.1

131Classes ...4.1.1

132Objects ...4.1.2

133Identifying Classes ..4.1.3

133Relationships between Classes ..4.1.4

135Using Predefned Classes ...4.2

136Objects and Object Variables ..4.2.1

139The LocalDate Class of the Java Library4.2.2

141Mutator and Accessor Methods ..4.2.3

145Defning Your Own Classes ...4.3

145An Employee Class ...4.3.1

149Use of Multiple Source Files ..4.3.2

149Dissecting the Employee Class ..4.3.3

150First Steps with Constructors ..4.3.4

152Implicit and Explicit Parameters ...4.3.5

153Benefts of Encapsulation ...4.3.6

156Class-Based Access Privileges ..4.3.7

viiContents

ptg16518469

156Private Methods ...4.3.8

157Final Instance Fields ..4.3.9

158Static Fields and Methods ...4.4

158Static Fields ...4.4.1

159Static Constants ..4.4.2

160Static Methods ..4.4.3

161Factory Methods ..4.4.4

161The main Method ...4.4.5

164Method Parameters ..4.5

171Object Construction ...4.6

172Overloading ..4.6.1

172Default Field Initialization ...4.6.2

173The Constructor with No Arguments4.6.3

174Explicit Field Initialization ...4.6.4

175Parameter Names ..4.6.5

176Calling Another Constructor ...4.6.6

177Initialization Blocks ...4.6.7

181Object Destruction and the finalize Method4.6.8

182Packages ..4.7

183Class Importation ..4.7.1

185Static Imports ...4.7.2

185Addition of a Class into a Package ...4.7.3

189Package Scope ..4.7.4

190The Class Path ...4.8

193Setting the Class Path ..4.8.1

194Documentation Comments ..4.9

194Comment Insertion ...4.9.1

195Class Comments ..4.9.2

195Method Comments ...4.9.3

196Field Comments ..4.9.4

196General Comments ...4.9.5

198Package and Overview Comments ...4.9.6

198Comment Extraction ...4.9.7

200Class Design Hints ..4.10

Contentsviii

ptg16518469

203Chapter 5: Inheritance ..

204Classes, Superclasses, and Subclasses ..5.1

204Defning Subclasses ...5.1.1

206Overriding Methods ...5.1.2

207Subclass Constructors ...5.1.3

212Inheritance Hierarchies ..5.1.4

213Polymorphism ..5.1.5

214Understanding Method Calls ..5.1.6

217Preventing Inheritance: Final Classes and Methods5.1.7

219Casting ..5.1.8

221Abstract Classes ...5.1.9

227Protected Access ..5.1.10

228Object: The Cosmic Superclass ...5.2

229The equals Method ..5.2.1

231Equality Testing and Inheritance ...5.2.2

235The hashCode Method ..5.2.3

238The toString Method ..5.2.4

244Generic Array Lists ..5.3

247Accessing Array List Elements ..5.3.1

251Compatibility between Typed and Raw Array Lists5.3.2

252Object Wrappers and Autoboxing ...5.4

256Methods with a Variable Number of Parameters5.5

258Enumeration Classes ...5.6

260Refection ..5.7

261The Class Class ..5.7.1

263A Primer on Catching Exceptions ...5.7.2

265Using Refection to Analyze the Capabilities of Classes5.7.3

271Using Refection to Analyze Objects at Runtime5.7.4

276Using Refection to Write Generic Array Code5.7.5

279Invoking Arbitrary Methods ...5.7.6

283Design Hints for Inheritance ..5.8

287Chapter 6: Interfaces, Lambda Expressions, and Inner Classes

288Interfaces ...6.1

288The Interface Concept ...6.1.1

ixContents

ptg16518469

295Properties of Interfaces ...6.1.2

297Interfaces and Abstract Classes ...6.1.3

298Static Methods ..6.1.4

298Default Methods ..6.1.5

300Resolving Default Method Conficts6.1.6

302Examples of Interfaces ..6.2

302Interfaces and Callbacks ...6.2.1

305The Comparator Interface ..6.2.2

306Object Cloning ...6.2.3

314Lambda Expressions ...6.3

314Why Lambdas? ..6.3.1

315The Syntax of Lambda Expressions ..6.3.2

318Functional Interfaces ...6.3.3

319Method References ..6.3.4

321Constructor References ...6.3.5

322Variable Scope ..6.3.6

324Processing Lambda Expressions ...6.3.7

328More about Comparators ...6.3.8

329Inner Classes ...6.4

331Use of an Inner Class to Access Object State6.4.1

334Special Syntax Rules for Inner Classes6.4.2

335Are Inner Classes Useful? Actually Necessary? Secure?6.4.3

339Local Inner Classes ..6.4.4

339Accessing Variables from Outer Methods6.4.5

342Anonymous Inner Classes ...6.4.6

346Static Inner Classes ..6.4.7

350Proxies ...6.5

350When to Use Proxies ...6.5.1

350Creating Proxy Objects ...6.5.2

355Properties of Proxy Classes ..6.5.3

357Chapter 7: Exceptions, Assertions, and Logging

358Dealing with Errors ...7.1

359The Classifcation of Exceptions ..7.1.1

361Declaring Checked Exceptions ..7.1.2

364How to Throw an Exception ..7.1.3

Contentsx

ptg16518469

365Creating Exception Classes ..7.1.4

367Catching Exceptions ..7.2

367Catching an Exception ..7.2.1

369Catching Multiple Exceptions ...7.2.2

370Rethrowing and Chaining Exceptions7.2.3

372The finally Clause ...7.2.4

376The Try-with-Resources Statement ...7.2.5

377Analyzing Stack Trace Elements ..7.2.6

381Tips for Using Exceptions ...7.3

384Using Assertions ..7.4

384The Assertion Concept ..7.4.1

385Assertion Enabling and Disabling ..7.4.2

386Using Assertions for Parameter Checking7.4.3

387Using Assertions for Documenting Assumptions7.4.4

389Logging ...7.5

389Basic Logging ...7.5.1

390Advanced Logging ..7.5.2

392Changing the Log Manager Confguration7.5.3

393Localization ..7.5.4

394Handlers ...7.5.5

398Filters ...7.5.6

399Formatters ..7.5.7

399A Logging Recipe ..7.5.8

409Debugging Tips ..7.6

415Chapter 8: Generic Programming ..

416Why Generic Programming? ..8.1

416The Advantage of Type Parameters ...8.1.1

417Who Wants to Be a Generic Programmer?8.1.2

418Defning a Simple Generic Class ...8.2

421Generic Methods ..8.3

422Bounds for Type Variables ..8.4

425Generic Code and the Virtual Machine ..8.5

425Type Erasure ..8.5.1

426Translating Generic Expressions ...8.5.2

427Translating Generic Methods ..8.5.3

xiContents

ptg16518469

429Calling Legacy Code ...8.5.4

430Restrictions and Limitations ..8.6

430

Type Parameters Cannot Be Instantiated with Primitive

Types ...

8.6.1

431Runtime Type Inquiry Only Works with Raw Types8.6.2

431You Cannot Create Arrays of Parameterized Types 8.6.3

432Varargs Warnings ..8.6.4

433You Cannot Instantiate Type Variables8.6.5

434You Cannot Construct a Generic Array8.6.6

436

Type Variables Are Not Valid in Static Contexts of Generic

Classes ...

8.6.7

436You Cannot Throw or Catch Instances of a Generic Class ...8.6.8

437You Can Defeat Checked Exception Checking8.6.9

439Beware of Clashes after Erasure ..8.6.10

440Inheritance Rules for Generic Types ...8.7

442Wildcard Types ..8.8

442The Wildcard Concept ..8.8.1

444Supertype Bounds for Wildcards ..8.8.2

447Unbounded Wildcards ...8.8.3

448Wildcard Capture ..8.8.4

450Refection and Generics ..8.9

450The Generic Class Class ..8.9.1

452Using Class<T> Parameters for Type Matching8.9.2

452Generic Type Information in the Virtual Machine8.9.3

459Chapter 9: Collections ..

460The Java Collections Framework ...9.1

460Separating Collection Interfaces and Implementation9.1.1

463The Collection Interface ..9.1.2

463Iterators ...9.1.3

466Generic Utility Methods ...9.1.4

469Interfaces in the Collections Framework9.1.5

472Concrete Collections ..9.2

474Linked Lists ..9.2.1

484Array Lists ..9.2.2

485Hash Sets ..9.2.3

Contentsxii

ptg16518469

489Tree Sets ..9.2.4

494Queues and Deques ..9.2.5

495Priority Queues ..9.2.6

497Maps ..9.3

497Basic Map Operations ...9.3.1

500Updating Map Entries ..9.3.2

502Map Views ..9.3.3

504Weak Hash Maps ...9.3.4

504Linked Hash Sets and Maps ..9.3.5

506Enumeration Sets and Maps ..9.3.6

507Identity Hash Maps ..9.3.7

509Views and Wrappers ...9.4

509Lightweight Collection Wrappers ...9.4.1

510Subranges ...9.4.2

511Unmodifable Views ...9.4.3

512Synchronized Views ..9.4.4

513Checked Views ..9.4.5

514A Note on Optional Operations ..9.4.6

517Algorithms ..9.5

518Sorting and Shuffing ..9.5.1

521Binary Search ...9.5.2

522Simple Algorithms ..9.5.3

524Bulk Operations ...9.5.4

525Converting between Collections and Arrays9.5.5

526Writing Your Own Algorithms ..9.5.6

528Legacy Collections ...9.6

528The Hashtable Class ...9.6.1

528Enumerations ...9.6.2

530Property Maps ...9.6.3

531Stacks ...9.6.4

532Bit Sets ...9.6.5

537Chapter 10: Graphics Programming ..

538Introducing Swing ...10.1

543Creating a Frame ..10.2

546Positioning a Frame ...10.3

xiiiContents

ptg16518469

549Frame Properties ...10.3.1

549Determining a Good Frame Size ...10.3.2

554Displaying Information in a Component ...10.4

560Working with 2D Shapes ..10.5

569Using Color ...10.6

573Using Special Fonts for Text ...10.7

582Displaying Images ...10.8

587Chapter 11: Event Handling ..

587Basics of Event Handling ..11.1

591Example: Handling a Button Click ...11.1.1

595Specifying Listeners Concisely ..11.1.2

598Example: Changing the Look-and-Feel11.1.3

603Adapter Classes ...11.1.4

607Actions ...11.2

616Mouse Events ...11.3

624The AWT Event Hierarchy ...11.4

626Semantic and Low-Level Events ...11.4.1

629Chapter 12: User Interface Components with Swing

630Swing and the Model-View-Controller Design Pattern12.1

630Design Patterns ..12.1.1

632The Model-View-Controller Pattern12.1.2

636A Model-View-Controller Analysis of Swing Buttons12.1.3

638Introduction to Layout Management ..12.2

641Border Layout ..12.2.1

644Grid Layout ..12.2.2

648Text Input ..12.3

649Text Fields ...12.3.1

651Labels and Labeling Components ..12.3.2

652Password Fields ...12.3.3

653Text Areas ...12.3.4

654Scroll Panes ...12.3.5

657Choice Components ..12.4

657Checkboxes ...12.4.1

660Radio Buttons ...12.4.2

Contentsxiv

ptg16518469

664Borders ..12.4.3

668Combo Boxes ..12.4.4

672Sliders ..12.4.5

678Menus ..12.5

679Menu Building ...12.5.1

682Icons in Menu Items ..12.5.2

683Checkbox and Radio Button Menu Items12.5.3

684Pop-Up Menus ...12.5.4

686Keyboard Mnemonics and Accelerators12.5.5

689Enabling and Disabling Menu Items12.5.6

694Toolbars ...12.5.7

696Tooltips ..12.5.8

699Sophisticated Layout Management ...12.6

701The Grid Bag Layout ...12.6.1

703The gridx, gridy, gridwidth, and gridheight Parameters ...12.6.1.1

703Weight Fields ..12.6.1.2

704The fill and anchor Parameters12.6.1.3

704Padding ...12.6.1.4

705

Alternative Method to Specify the gridx, gridy,

gridwidth, and gridheight Parameters

12.6.1.5

706

A Helper Class to Tame the Grid Bag

Constraints ..

12.6.1.6

713Group Layout ...12.6.2

723Using No Layout Manager ..12.6.3

724Custom Layout Managers ..12.6.4

729Traversal Order ..12.6.5

730Dialog Boxes ...12.7

731Option Dialogs ...12.7.1

741Creating Dialogs ..12.7.2

746Data Exchange ..12.7.3

752File Dialogs ...12.7.4

764Color Choosers ..12.7.5

770Troubleshooting GUI Programs ...12.8

770Debugging Tips ...12.8.1

774Letting the AWT Robot Do the Work12.8.2

xvContents

ptg16518469

779Chapter 13: Deploying Java Applications ...

780JAR Files ..13.1

780Creating JAR fles ..13.1.1

781The Manifest ...13.1.2

782Executable JAR Files ...13.1.3

783Resources ..13.1.4

787Sealing ...13.1.5

788Storage of Application Preferences ...13.2

788Property Maps ...13.2.1

794The Preferences API ..13.2.2

800Service Loaders ..13.3

802Applets ..13.4

803A Simple Applet ..13.4.1

808The applet HTML Tag and Its Attributes13.4.2

810Use of Parameters to Pass Information to Applets13.4.3

816Accessing Image and Audio Files ...13.4.4

818The Applet Context ...13.4.5

818Inter-Applet Communication ..13.4.6

819Displaying Items in the Browser ...13.4.7

820The Sandbox ...13.4.8

822Signed Code ...13.4.9

824Java Web Start ...13.5

824Delivering a Java Web Start Application13.5.1

829The JNLP API ...13.5.2

839Chapter 14: Concurrency ...

840What Are Threads? ..14.1

846Using Threads to Give Other Tasks a Chance14.1.1

851Interrupting Threads ...14.2

855Thread States ...14.3

855New Threads ..14.3.1

855Runnable Threads ..14.3.2

856Blocked and Waiting Threads ..14.3.3

857Terminated Threads ..14.3.4

858Thread Properties ...14.4

858Thread Priorities ..14.4.1

Contentsxvi

ptg16518469

859Daemon Threads ..14.4.2

860Handlers for Uncaught Exceptions ..14.4.3

862Synchronization ...14.5

862An Example of a Race Condition ..14.5.1

866The Race Condition Explained ..14.5.2

868Lock Objects ...14.5.3

872Condition Objects ..14.5.4

878The synchronized Keyword ..14.5.5

882Synchronized Blocks ...14.5.6

884The Monitor Concept ..14.5.7

885Volatile Fields ...14.5.8

886Final Variables ..14.5.9

886Atomics ...14.5.10

889Deadlocks ...14.5.11

892Thread-Local Variables ...14.5.12

893Lock Testing and Timeouts ..14.5.13

895Read/Write Locks ...14.5.14

896Why the stop and suspend Methods Are Deprecated14.5.15

898Blocking Queues ..14.6

905Thread-Safe Collections ..14.7

905Effcient Maps, Sets, and Queues ..14.7.1

907Atomic Update of Map Entries ..14.7.2

909Bulk Operations on Concurrent Hash Maps14.7.3

912Concurrent Set Views ...14.7.4

912Copy on Write Arrays ...14.7.5

912Parallel Array Algorithms ..14.7.6

914Older Thread-Safe Collections ...14.7.7

915Callables and Futures ..14.8

920Executors ...14.9

921Thread Pools ...14.9.1

926Scheduled Execution ...14.9.2

927Controlling Groups of Tasks ..14.9.3

928The Fork-Join Framework ..14.9.4

931Completable Futures ...14.9.5

934Synchronizers ...14.10

xviiContents

ptg16518469

935Semaphores ..14.10.1

936Countdown Latches ..14.10.2

936Barriers ..14.10.3

937Exchangers ...14.10.4

937Synchronous Queues ..14.10.5

937Threads and Swing ..14.11

939Running Time-Consuming Tasks ..14.11.1

943Using the Swing Worker ..14.11.2

951The Single-Thread Rule ..14.11.3

953Appendix ..

957Index ...

Contentsxviii

ptg16518469

Preface

To the Reader
In late 1995, the Java programming language burst onto the Internet scene and

gained instant celebrity status. The promise of Java technology was that it would

become the universal glue that connects users with information wherever it comes

from—web servers, databases, information providers, or any other imaginable

source. Indeed, Java is in a unique position to fulfll this promise. It is an extremely

solidly engineered language that has gained wide acceptance. Its built-in security

and safety features are reassuring both to programmers and to the users of Java

programs. Java has built-in support for advanced programming tasks, such as

network programming, database connectivity, and concurrency.

Since 1995, nine major revisions of the Java Development Kit have been released.

Over the course of the last 20 years, the Application Programming Interface (API)

has grown from about 200 to over 4,000 classes. The API now spans such diverse

areas as user interface construction, database management, internationalization,

security, and XML processing.

The book you have in your hands is the frst volume of the tenth edition of Core

Java

®
. Each edition closely followed a release of the Java Development Kit, and

each time, we rewrote the book to take advantage of the newest Java features.

This edition has been updated to refect the features of Java Standard Edition

(SE) 8.

As with the previous editions of this book, we still target serious programmers who

want to put Java to work on real projects. We think of you, our reader, as a program-

mer with a solid background in a programming language other than Java, and

we assume that you don’t like books flled with toy examples (such as toasters,

zoo animals, or “nervous text”). You won’t fnd any of these in our book. Our

goal is to enable you to fully understand the Java language and library, not to

give you an illusion of understanding.

In this book you will fnd lots of sample code demonstrating almost every language

and library feature that we discuss. We keep the sample programs purposefully

simple to focus on the major points, but, for the most part, they aren’t fake and

they don’t cut corners. They should make good starting points for your own code.

xix

ptg16518469

We assume you are willing, even eager, to learn about all the advanced features

that Java puts at your disposal. For example, we give you a detailed treatment of

• Object-oriented programming

• Refection and proxies

• Interfaces and inner classes

• Exception handling

• Generic programming

• The collections framework

• The event listener model

• Graphical user interface design with the Swing UI toolkit

• Concurrency

With the explosive growth of the Java class library, a one-volume treatment of

all the features of Java that serious programmers need to know is no longer pos-

sible. Hence, we decided to break up the book into two volumes. The frst volume,

which you hold in your hands, concentrates on the fundamental concepts of the

Java language, along with the basics of user-interface programming. The second

volume, Core Java

®

, Volume II—Advanced Features, goes further into the enterprise

features and advanced user-interface programming. It includes detailed discus-

sions of

• The Stream API

• File processing and regular expressions

• Databases

• XML processing

• Annotations

• Internationalization

• Network programming

• Advanced GUI components

• Advanced graphics

• Native methods

When writing a book, errors and inaccuracies are inevitable. We’d very much

like to know about them. But, of course, we’d prefer to learn about each of them

only once. We have put up a list of frequently asked questions, bug fxes, and

workarounds on a web page at http://horstmann.com/corejava. Strategically placed at

the end of the errata page (to encourage you to read through it frst) is a form you

can use to report bugs and suggest improvements. Please don’t be disappointed

if we don’t answer every query or don’t get back to you immediately. We do read

Prefacexx

http://horstmann.com/corejava

ptg16518469

all e-mail and appreciate your input to make future editions of this book clearer

and more informative.

A Tour of This Book
Chapter 1 gives an overview of the capabilities of Java that set it apart from other

programming languages. We explain what the designers of the language set out

to do and to what extent they succeeded. Then, we give a short history of how

Java came into being and how it has evolved.

In Chapter 2, we tell you how to download and install the JDK and the program

examples for this book. Then we guide you through compiling and running three

typical Java programs—a console application, a graphical application, and an

applet—using the plain JDK, a Java-enabled text editor, and a Java IDE.

Chapter 3 starts the discussion of the Java language. In this chapter, we cover the

basics: variables, loops, and simple functions. If you are a C or C++ programmer,

this is smooth sailing because the syntax for these language features is essentially

the same as in C. If you come from a non-C background such as Visual Basic, you

will want to read this chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming

practice, and Java is an object-oriented programming language. Chapter 4 intro-

duces encapsulation, the frst of two fundamental building blocks of object orien-

tation, and the Java language mechanism to implement it—that is, classes and

methods. In addition to the rules of the Java language, we also give advice on

sound OOP design. Finally, we cover the marvelous javadoc tool that formats your

code comments as a set of hyperlinked web pages. If you are familiar with C++,

you can browse through this chapter quickly. Programmers coming from a non-

object-oriented background should expect to spend some time mastering the OOP

concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 in-

troduces the other—namely, inheritance. Inheritance lets you take an existing class

and modify it according to your needs. This is a fundamental technique for pro-

gramming in Java. The inheritance mechanism in Java is quite similar to that in

C++. Once again, C++ programmers can focus on the differences between the

languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces let you

go beyond the simple inheritance model of Chapter 5. Mastering interfaces allows

you to have full access to the power of Java’s completely object-oriented approach

to programming. After we cover interfaces, we move on to lambda expressions, a

xxiPreface

ptg16518469

concise way for expressing a block of code that can be executed at a later point

in time. We then cover a useful technical feature of Java called inner classes.

Chapter 7 discusses exception handling—Java’s robust mechanism to deal with the

fact that bad things can happen to good programs. Exceptions give you an effcient

way of separating the normal processing code from the error handling. Of course,

even after hardening your program by handling all exceptional conditions, it still

might fail to work as expected. In the fnal part of this chapter, we give you a

number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic programming

makes your programs easier to read and safer. We show you how to use strong

typing and remove unsightly and unsafe casts, and how to deal with the complex-

ities that arise from the need to stay compatible with older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform. When-

ever you want to collect multiple objects and retrieve them later, you should use

a collection that is best suited for your circumstances, instead of just tossing the

elements into an array. This chapter shows you how to take advantage of

the standard collections that are prebuilt for your use.

Chapter 10 starts the coverage of GUI programming. We show how you can make

windows, how to paint on them, how to draw with geometric shapes, how to

format text in multiple fonts, and how to display images.

Chapter 11 is a detailed discussion of the event model of the AWT, the abstract

window toolkit. You’ll see how to write code that responds to events, such as mouse

clicks or key presses. Along the way you’ll see how to handle basic GUI elements

such as buttons and panels.

Chapter 12 discusses the Swing GUI toolkit in great detail. The Swing toolkit al-

lows you to build cross-platform graphical user interfaces. You’ll learn all about

the various kinds of buttons, text components, borders, sliders, list boxes, menus,

and dialog boxes. However, some of the more advanced components are discussed

in Volume II.

Chapter 13 shows you how to deploy your programs, either as applications or

applets. We describe how to package programs in JAR fles, and how to deliver

applications over the Internet with the Java Web Start and applet mechanisms.

We also explain how Java programs can store and retrieve confguration

information once they have been deployed.

Chapter 14 fnishes the book with a discussion of concurrency, which enables

you to program tasks to be done in parallel. This is an important and exciting

Prefacexxii

ptg16518469

application of Java technology in an era where most processors have multiple

cores that you want to keep busy.

The Appendix lists the reserved words of the Java language.

Conventions
As is common in many computer books, we use monospace type to represent

computer code.

NOTE: Notes are tagged with “note” icons that look like this.

TIP: Tips are tagged with “tip” icons that look like this.

CAUTION: When there is danger ahead, we warn you with a “caution” icon.

C++ NOTE: There are many C++ notes that explain the differences between
Java and C++.You can skip over them if you don’t have a background in C++
or if you consider your experience with that language a bad dream of which
you’d rather not be reminded.

Java comes with a large programming library, or Application Programming In-

terface (API). When using an API call for the frst time, we add a short summary

description at the end of the section. These descriptions are a bit more informal

but, we hope, also a little more informative than those in the offcial online API

documentation. The names of interfaces are in italics, just like in the offcial doc-

umentation. The number after a class, interface, or method name is the JDK version

in which the feature was introduced, as shown in the following example:

Application Programming Interface 1.2

xxiiiPreface

ptg16518469

Programs whose source code is on the book’s companion web site are presented

as listings, for instance:

Listing 1.1 InputTest/InputTest.java

Sample Code
The web site for this book at http://horstmann.com/corejava contains all sample code

from the book, in compressed form. You can expand the fle either with one of

the familiar unzipping programs or simply with the jar utility that is part of the

Java Development Kit. See Chapter 2 for more information on installing

the Java Development Kit and the sample code.

Prefacexxiv

http://horstmann.com/corejava

ptg16518469

Acknowledgments

Writing a book is always a monumental effort, and rewriting it doesn’t seem to

be much easier, especially with the continuous change in Java technology. Making

a book a reality takes many dedicated people, and it is my great pleasure to

acknowledge the contributions of the entire Core Java team.

A large number of individuals at Prentice Hall provided valuable assistance but

managed to stay behind the scenes. I’d like them all to know how much I appre-

ciate their efforts. As always, my warm thanks go to my editor, Greg Doench, for

steering the book through the writing and production process, and for allowing

me to be blissfully unaware of the existence of all those folks behind the scenes.

I am very grateful to Julie Nahil for production support, and to Dmitry Kirsanov

and Alina Kirsanova for copyediting and typesetting the manuscript. My thanks

also to my coauthor of earlier editions, Gary Cornell, who has since moved on to

other ventures.

Thanks to the many readers of earlier editions who reported embarrassing errors

and made lots of thoughtful suggestions for improvement. I am particularly

grateful to the excellent reviewing team who went over the manuscript with an

amazing eye for detail and saved me from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley Univer-

sity), Lance Andersen (Oracle), Paul Anderson (Anderson Software Group), Alec

Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua Bloch, David Brown,

Corky Cartwright, Frank Cohen (PushToTest), Chris Crane (devXsolution),

Dr. Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), David

Geary (Clarity Training), Jim Gish (Oracle), Brian Goetz (Oracle), Angela Gordon,

Dan Gordon (Electric Cloud), Rob Gordon, John Gray (University of Hartford),

Cameron Gregory (olabs.com), Marty Hall (coreservlets.com, Inc.), Vincent Hardy

(Adobe Systems), Dan Harkey (San Jose State University), William Higgins (IBM),

Vladimir Ivanovic (PointBase), Jerry Jackson (CA Technologies), Tim Kimmet

(Walmart), Chris Laffra, Charlie Lai (Apple), Angelika Langer, Doug Langston,

Hang Lau (McGill University), Mark Lawrence, Doug Lea (SUNY Oswego),

Gregory Longshore, Bob Lynch (Lynch Associates), Philip Milne (consultant),

Mark Morrissey (The Oregon Graduate Institute), Mahesh Neelakanta (Florida

Atlantic University), Hao Pham, Paul Philion, Blake Ragsdell, Stuart Reges

(University of Arizona), Rich Rosen (Interactive Data Corporation), Peter Sanders

(ESSI University, Nice, France), Dr. Paul Sanghera (San Jose State University and

xxv

ptg16518469

Brooks College), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems),

Yoshiki Shibata, Bradley A. Smith, Steven Stelting (Oracle), Christopher Taylor,

Luke Taylor (Valtech), George Thiruvathukal, Kim Topley (StreamingEdge), Janet

Traub, Paul Tyma (consultant), Peter van der Linden, Christian Ullenboom, Burt

Walsh, Dan Xu (Oracle), and John Zavgren (Oracle).

Cay Horstmann

Biel/Bienne, Switzerland

November 2015

Acknowledgmentsxxvi

ptg16518469

1CHAPTER

An Introduction to Java

In this chapter

• 1.1 Java as a Programming Platform, page 1

• 1.2 The Java ‘White Paper’ Buzzwords, page 2

• 1.3 Java Applets and the Internet, page 8

• 1.4 A Short History of Java, page 10

• 1.5 Common Misconceptions about Java, page 13

The frst release of Java in 1996 generated an incredible amount of excitement,

not just in the computer press, but in mainstream media such as the New York

Times, the Washington Post, and BusinessWeek. Java has the distinction of being

the frst and only programming language that had a ten-minute story on National

Public Radio. A $100,000,000 venture capital fund was set up solely for products

using a specifc computer language. I hope you will enjoy the brief history of Java

that you will fnd in this chapter.

1.1 Java as a Programming Platform
In the frst edition of this book, my coauthor Gary Cornell and I had this to write

about Java:

“As a computer language, Java’s hype is overdone: Java is certainly a good pro-

gramming language. There is no doubt that it is one of the better languages

1

ptg16518469

available to serious programmers. We think it could potentially have been a great

programming language, but it is probably too late for that. Once a language is

out in the feld, the ugly reality of compatibility with existing code sets in.”

Our editor got a lot of fack for this paragraph from someone very high up at Sun

Microsystems, the company that originally developed Java. The Java language

has a lot of nice features that we will examine in detail later in this chapter. It has

its share of warts, and some of the newer additions to the language are not as

elegant as the original features because of the ugly reality of compatibility.

But, as we already said in the frst edition, Java was never just a language. There

are lots of programming languages out there, but few of them make much of a

splash. Java is a whole platform, with a huge library, containing lots of reusable

code, and an execution environment that provides services such as security,

portability across operating systems, and automatic garbage collection.

As a programmer, you will want a language with a pleasant syntax and compre-

hensible semantics (i.e., not C++). Java fts the bill, as do dozens of other fne

languages. Some languages give you portability, garbage collection, and the like,

but they don’t have much of a library, forcing you to roll your own if you want

fancy graphics or networking or database access. Well, Java has everything—a

good language, a high-quality execution environment, and a vast library.

That combination is what makes Java an irresistible proposition to so many

programmers.

1.2 The Java “White Paper” Buzzwords
The authors of Java wrote an infuential white paper that explains their design

goals and accomplishments. They also published a shorter overview that is

organized along the following 11 buzzwords:

1. Simple

2. Object-Oriented

3. Distributed

4. Robust

5. Secure

6. Architecture-Neutral

7. Portable

8. Interpreted

9. High-Performance

Chapter 1 An Introduction to Java2

ptg16518469

10. Multithreaded

11. Dynamic

In this section, you will fnd a summary, with excerpts from the white paper, of

what the Java designers say about each buzzword, together with a commentary

based on my experiences with the current version of Java.

NOTE: The white paper can be found at www.oracle.com/technetwork/java/
langenv-140151.html.You can retrieve the overview with the 11 buzzwords at
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf.

1.2.1 Simple
We wanted to build a system that could be programmed easily without a lot of eso-

teric training and which leveraged today’s standard practice. So even though we

found that C++ was unsuitable, we designed Java as closely to C++ as possible in

order to make the system more comprehensible. Java omits many rarely used,

poorly understood, confusing features of C++ that, in our experience, bring more

grief than beneft.

The syntax for Java is, indeed, a cleaned-up version of C++ syntax. There is no

need for header fles, pointer arithmetic (or even a pointer syntax), structures,

unions, operator overloading, virtual base classes, and so on. (See the C++ notes

interspersed throughout the text for more on the differences between Java and

C++.) The designers did not, however, attempt to fx all of the clumsy features

of C++. For example, the syntax of the switch statement is unchanged in Java. If

you know C++, you will fnd the transition to the Java syntax easy.

At the time that Java was released, C++ was actually not the most commonly

used programming language. Many developers used Visual Basic and its drag-

and-drop programming environment. These developers did not fnd Java

simple. It took several years for Java development environments to catch up.

Nowadays, Java development environments are far ahead of those for most other

programming languages.

Another aspect of being simple is being small. One of the goals of Java is to enable

the construction of software that can run stand-alone on small machines. The size

of the basic interpreter and class support is about 40K; the basic standard libraries

and thread support (essentially a self-contained microkernel) add another 175K.

This was a great achievement at the time. Of course, the library has since grown

to huge proportions. There is now a separate Java Micro Edition with a smaller

library, suitable for embedded devices.

31.2 The Java “White Paper” Buzzwords

http://www.oracle.com/technetwork/java/
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf

ptg16518469

1.2.2 Object-Oriented
Simply stated, object-oriented design is a programming technique that focuses on

the data (= objects) and on the interfaces to that object. To make an analogy with

carpentry, an “object-oriented” carpenter would be mostly concerned with the chair

he is building, and secondarily with the tools used to make it; a “non-object-oriented”

carpenter would think primarily of his tools. The object-oriented facilities of Java

are essentially those of C++.

Object orientation was pretty well established when Java was developed.

The object-oriented features of Java are comparable to those of C++. The major

difference between Java and C++ lies in multiple inheritance, which Java has re-

placed with the simpler concept of interfaces. Java has a richer capacity for runtime

introspection than C++ (which is discussed in Chapter 5).

1.2.3 Distributed
Java has an extensive library of routines for coping with TCP/IP protocols like

HTTP and FTP. Java applications can open and access objects across the Net via

URLs with the same ease as when accessing a local fle system.

Nowadays, one takes this for granted, but in 1995, connecting to a web server

from a C++ or Visual Basic program was a major undertaking.

1.2.4 Robust
Java is intended for writing programs that must be reliable in a variety of ways.

Java puts a lot of emphasis on early checking for possible problems, later dynamic

(runtime) checking, and eliminating situations that are error-prone. . . The single

biggest difference between Java and C/C++ is that Java has a pointer model that

eliminates the possibility of overwriting memory and corrupting data.

The Java compiler detects many problems that in other languages would show

up only at runtime. As for the second point, anyone who has spent hours chasing

memory corruption caused by a pointer bug will be very happy with this aspect

of Java.

1.2.5 Secure
Java is intended to be used in networked/distributed environments. Toward that

end, a lot of emphasis has been placed on security. Java enables the construction of

virus-free, tamper-free systems.

Chapter 1 An Introduction to Java4

ptg16518469

From the beginning, Java was designed to make certain kinds of attacks impossible,

among them:

• Overrunning the runtime stack—a common attack of worms and viruses

• Corrupting memory outside its own process space

• Reading or writing fles without permission

Originally, the Java attitude towards downloaded code was “Bring it on!” Un-

trusted code was executed in a sandbox environment where it could not impact

the host system. Users were assured that nothing bad could happen because Java

code, no matter where it came from, was incapable of escaping from the sandbox.

However, the security model of Java is complex. Not long after the frst version

of the Java Development Kit was shipped, a group of security experts at Princeton

University found subtle bugs that allowed untrusted code to attack the host

system.

Initially, security bugs were fxed quickly. Unfortunately, over time, hackers got

quite good at spotting subtle faws in the implementation of the security

architecture. Sun, and then Oracle, had a tough time keeping up with bug fxes.

After a number of high-profle attacks, browser vendors and Oracle became in-

creasingly cautious. Java browser plug-ins no longer trust remote code unless it

is digitally signed and users have agreed to its execution.

NOTE:Even though in hindsight, the Java security model was not as successful
as originally envisioned, Java was well ahead of its time. A competing code
delivery mechanism from Microsoft relied on digital signatures alone for security.
Clearly this was not suffcient—as any user of Microsoft’s own products can
confrm, programs from well-known vendors do crash and create damage.

1.2.6 Architecture-Neutral
The compiler generates an architecture-neutral object fle format—the compiled

code is executable on many processors, given the presence of the Java runtime system.

The Java compiler does this by generating bytecode instructions which have nothing

to do with a particular computer architecture. Rather, they are designed to be both

easy to interpret on any machine and easily translated into native machine code on

the fy.

Generating code for a “virtual machine” was not a new idea at the time. Program-

ming languages such as Lisp, Smalltalk, and Pascal had employed this technique

for many years.

51.2 The Java “White Paper” Buzzwords

ptg16518469

Of course, interpreting virtual machine instructions is slower than running ma-

chine instructions at full speed. However, virtual machines have the option of

translating the most frequently executed bytecode sequences into machine code—a

process called just-in-time compilation.

Java’s virtual machine has another advantage. It increases security because it can

check the behavior of instruction sequences.

1.2.7 Portable
Unlike C and C++, there are no “implementation-dependent” aspects of the

specifcation. The sizes of the primitive data types are specifed, as is the behavior

of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean a

16-bit integer, a 32-bit integer, or any other size that the compiler vendor likes.

The only restriction is that the int type must have at least as many bytes as a short
int and cannot have more bytes than a long int. Having a fxed size for number

types eliminates a major porting headache. Binary data is stored and

transmitted in a fxed format, eliminating confusion about byte ordering. Strings

are saved in a standard Unicode format.

The libraries that are a part of the system defne portable interfaces. For example,

there is an abstract Window class and implementations of it for UNIX, Windows, and

the Macintosh.

The example of a Window class was perhaps poorly chosen. As anyone who has ever

tried knows, it is an effort of heroic proportions to implement a user interface

that looks good on Windows, the Macintosh, and ten favors of UNIX. Java 1.0

made the heroic effort, delivering a simple toolkit that provided common user

interface elements on a number of platforms. Unfortunately, the result was a li-

brary that, with a lot of work, could give barely acceptable results on different

systems. That initial user interface toolkit has since been replaced, and replaced

again, and portability across platforms remains an issue.

However, for everything that isn’t related to user interfaces, the Java libraries do

a great job of letting you work in a platform-independent manner. You can work

with fles, regular expressions, XML, dates and times, databases, network connec-

tions, threads, and so on, without worrying about the underlying operating system.

Not only are your programs portable, but the Java APIs are often of higher quality

than the native ones.

Chapter 1 An Introduction to Java6

ptg16518469

1.2.8 Interpreted
The Java interpreter can execute Java bytecodes directly on any machine to which

the interpreter has been ported. Since linking is a more incremental and lightweight

process, the development process can be much more rapid and exploratory.

This seems a real stretch. Anyone who has used Lisp, Smalltalk, Visual Basic,

Python, R, or Scala knows what a “rapid and exploratory” development process

is. You try out something, and you instantly see the result. Java development

environments are not focused on that experience.

1.2.9 High-Performance
While the performance of interpreted bytecodes is usually more than adequate, there

are situations where higher performance is required. The bytecodes can be translated

on the fy (at runtime) into machine code for the particular CPU the application is

running on.

In the early years of Java, many users disagreed with the statement that the per-

formance was “more than adequate.” Today, however, the just-in-time compilers

have become so good that they are competitive with traditional compilers and,

in some cases, even outperform them because they have more information

available. For example, a just-in-time compiler can monitor which code is executed

frequently and optimize just that code for speed. A more sophisticated optimiza-

tion is the elimination (or “inlining”) of function calls. The just-in-time compiler

knows which classes have been loaded. It can use inlining when, based upon the

currently loaded collection of classes, a particular function is never overridden,

and it can undo that optimization later if necessary.

1.2.10 Multithreaded
[The] benefts of multithreading are better interactive responsiveness and real-time

behavior.

Nowadays, we care about concurrency because Moore’s law is coming to an end.

Instead of faster processors, we just get more of them, and we have to keep them

busy. Yet when you look at most programming languages, they show a shocking

disregard for this problem.

Java was well ahead of its time. It was the frst mainstream language to support

concurrent programming. As you can see from the white paper, its motivation

was a little different. At the time, multicore processors were exotic, but web pro-

gramming had just started, and processors spent a lot of time waiting for a

71.2 The Java “White Paper” Buzzwords

ptg16518469

response from the server. Concurrent programming was needed to make sure

the user interface didn’t freeze.

Concurrent programming is never easy, but Java has done a very good job making

it manageable.

1.2.11 Dynamic
In a number of ways, Java is a more dynamic language than C or C++. It was de-

signed to adapt to an evolving environment. Libraries can freely add new methods

and instance variables without any effect on their clients. In Java, fnding out

runtime type information is straightforward.

This is an important feature in the situations where code needs to be added to a

running program. A prime example is code that is downloaded from the Internet

to run in a browser. In C or C++, this is indeed a major challenge, but the Java

designers were well aware of dynamic languages that made it easy to evolve a

running program. Their achievement was to bring this feature to a mainstream

programming language.

NOTE: Shortly after the initial success of Java, Microsoft released a product
called J++ with a programming language and virtual machine that were almost
identical to Java. At this point, Microsoft is no longer supporting J++ and has
instead introduced another language called C# that also has many similarities
with Java but runs on a different virtual machine. This book does not cover J++
or C#.

1.3 Java Applets and the Internet
The idea here is simple: Users will download Java bytecodes from the Internet

and run them on their own machines. Java programs that work on web pages are

called applets. To use an applet, you only need a Java-enabled web browser, which

will execute the bytecodes for you. You need not install any software. You get

the latest version of the program whenever you visit the web page containing the

applet. Most importantly, thanks to the security of the virtual machine, you never

need to worry about attacks from hostile code.

Inserting an applet into a web page works much like embedding an image. The

applet becomes a part of the page, and the text fows around the space used for

the applet. The point is, this image is alive. It reacts to user commands, changes

its appearance, and exchanges data between the computer presenting the applet

and the computer serving it.

Chapter 1 An Introduction to Java8

ptg16518469

Figure 1.1 shows a good example of a dynamic web page that carries out sophis-

ticated calculations. The Jmol applet displays molecular structures. By using the

mouse, you can rotate and zoom each molecule to better understand its structure.

This kind of direct manipulation is not achievable with static web pages, but

applets make it possible. (You can fnd this applet at http://jmol.sourceforge.net.)

Figure 1.1 The Jmol applet

When applets frst appeared, they created a huge amount of excitement. Many

people believe that the lure of applets was responsible for the astonishing popu-

larity of Java. However, the initial excitement soon turned into frustration. Various

versions of the Netscape and Internet Explorer browsers ran different versions

of Java, some of which were seriously outdated. This sorry situation made it in-

creasingly diffcult to develop applets that took advantage of the most current

Java version. Instead, Adobe’s Flash technology became popular for achieving

dynamic effects in the browser. Later, when Java was dogged by serious security

issues, browsers and the Java browser plug-in became increasingly restrictive.

Nowadays, it requires skill and dedication to get applets to work in your browser.

For example, if you visit the Jmol web site, you will likely encounter a message

exhorting you to confgure your browser for allowing applets to run.

91.3 Java Applets and the Internet

http://jmol.sourceforge.net

